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Abstract
The K-means algorithm is one of the most popular clustering algorithms in

current use as it is relatively fast yet simple to understand and deploy in practice.
Nevertheless, its use entails certain restrictive assumptions about the data, the
negative consequences of which are not always immediately apparent, as we
demonstrate. While more flexible algorithms have been developed, their
widespread use has been hindered by their computational and technical complexity.
Motivated by these considerations, we present a flexible alternative to K-means
that relaxes most of the assumptions, whilst remaining almost as fast and simple.
This novel algorithm which we call MAP-DP (maximum a-posteriori Dirichlet
process mixtures), is statistically rigorous as it is based on nonparametric Bayesian
Dirichlet process mixture modeling. This approach allows us to overcome most of
the limitations imposed by K-means. The number of clusters K is estimated from
the data instead of being fixed a-priori as in K-means. In addition, while
K-means is restricted to continuous data, the MAP-DP framework can be applied
to many kinds of data, for example, binary, count or ordinal data. Also, it can
efficiently separate outliers from the data. This additional flexibility does not
incur a significant computational overhead compared to K-means with MAP-DP
convergence typically achieved in the order of seconds for many practical problems.
Finally, in contrast to K-means, since the algorithm is based on an underlying
statistical model, the MAP-DP framework can deal with missing data and enables
model testing such as cross validation in a principled way. We demonstrate the
simplicity and effectiveness of this algorithm on the health informatics problem of
clinical sub-typing in a cluster of diseases known as parkinsonism.

1 Introduction
The rapid increase in the capability of automatic data acquisition and storage is
providing a striking potential for innovation in science and technology. However,
extracting meaningful information from complex, ever-growing data sources poses new
challenges. This motivates the development of automated ways to discover underlying
structure in data. The key information of interest is often obscured behind redundancy
and noise, and grouping the data into clusters with similar features is one way of
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efficiently summarizing the data for further analysis [1]. Cluster analysis has been used
in many fields [1, 2], such as information retrieval [3], social media analysis [4],
neuroscience [5], image processing [6], text analysis [7] and bioinformatics [8].

Despite the large variety of flexible models and algorithms for clustering available,
K-means remains the preferred tool for most real world applications [9]. K-means was
first introduced as a method for vector quantization in communication technology
applications [10], yet it is still one of the most widely-used clustering algorithms. For
example, in discovering sub-types of parkinsonism, we observe that most studies have
used K-means algorithm to find sub-types in patient data [11]. It is also the preferred
choice in the visual bag of words models in automated image understanding [12].
Perhaps the major reasons for the popularity of K-means are conceptual simplicity and
computational scalability, in contrast to more flexible clustering methods. Bayesian
probabilistic models, for instance, require complex sampling schedules or variational
inference algorithms that can be difficult to implement and understand, and are often
not computationally tractable for large data sets.

For the ensuing discussion, we will use the following mathematical notation to
describe K-means clustering, and then also to introduce our novel clustering algorithm.
Let us denote the data as X = (x1, . . . , xN ) where each of the N data points xi is a
D-dimensional vector. We will denote the cluster assignment associated to each data
point by z1, . . . , zN , where if data point xi belongs to cluster k we write zi = k. The
number of observations assigned to cluster k, for k ∈ 1, . . . ,K, is Nk and N−ik is the
number of points assigned to cluster k excluding point i. The parameter ε > 0 is a small
threshold value to assess when the algorithm has converged on a good solution and
should be stopped (typically ε = 10−6). Using this notation, K-means can be written as
in Algorithm 1.

To paraphrase this algorithm: it alternates between updating the assignments of
data points to clusters while holding the estimated cluster centroids, µk, fixed (lines
5-11), and updating the cluster centroids while holding the assignments fixed (lines
14-15). It can be shown to find some minimum (not necessarily the global, i.e. smallest
of all possible minima) of the following objective function:

E = 1
2

K∑
k=1

∑
i:zi=k

‖xi − µk‖22 (1)

with respect to the set of all cluster assignments z and cluster centroids µ, where 1
2 ‖.‖

2
2

denotes the Euclidean distance (distance measured as the sum of the square of
differences of coordinates in each direction). In fact, the value of E cannot increase on
each iteration, so, eventually E will stop changing (tested on line 17).

Perhaps unsurprisingly, the simplicity and computational scalability of K-means
comes at a high cost. In particular, the algorithm is based on quite restrictive
assumptions about the data, often leading to severe limitations in accuracy and
interpretability:

1. By use of the Euclidean distance (algorithm line 9) K-means treats the data space
as isotropic (distances unchanged by translations and rotations). This means that
data points in each cluster are modeled as lying within a sphere around the cluster
centroid. A sphere has the same radius in each dimension. Furthermore, as
clusters are modeled only by the position of their centroids, K-means implicitly
assumes all clusters have the same radius. When this implicit equal-radius,
spherical assumption is violated, K-means can behave in a non-intuitive way, even
when clusters are very clearly identifiable by eye (see Figs 1, 2 and discussion in
Sections 5.1, 5.4).
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Algorithm 1: K-means Algorithm 2: MAP-DP
(spherical Gaussian)

Input x1, . . . , xN : D-dimensional
data
ε > 0: convergence threshold
K: number of clusters

x1, . . . , xN : D-dimensional data
ε > 0: convergence threshold
N0: prior count
σ̂2: spherical cluster variance
σ2

0 : prior centroid variance
µ0: prior centroid location

Output z1, . . . , zN : cluster
assignments
µ1, . . . , µK : cluster centroids

z1, . . . , zN : cluster assignments
K: number of clusters

1 Set µk for all k ∈ 1, . . . ,K 1 K = 1, zi = 1 for all i ∈ 1, . . . , N
2 Enew =∞ 2 Enew =∞
3 repeat 3 repeat
4 Eold = Enew 4 Eold = Enew
5 for i ∈ 1, . . . , N 5 for i ∈ 1, . . . , N
6 for k ∈ 1, . . . ,K 6 for k ∈ 1, . . . ,K
7 7 σ−ik =

(
1
σ2

0
+ 1

σ̂2N
−i
k

)−1

8 8 µ−ik = σ−ik

(
µ0
σ2

0
+ 1

σ̂2

∑
j:zj=k,j 6=i xj

)
9 di,k = 1

2 ‖xi − µk‖
2
2 9 di,k = 1

2(σ−i
k

+σ̂2)
∥∥xi − µ−ik ∥∥2

2

+D
2 ln

(
σ−ik + σ̂2)

10 10 di,K+1 = 1
2(σ2

0+σ̂2) ‖xi − µ0‖22
+D

2 ln
(
σ2

0 + σ̂2)
11 zi = arg mink∈1,...,K di,k 11 zi = arg mink∈1,...,K+1

[
di,k − lnN−ik

]
12 12 if zi = K + 1
13 13 K = K + 1
14 for k ∈ 1, . . . ,K 14
15 µk = 1

Nk

∑
j:zj=k xj 15

16 Enew =
∑K
k=1

∑
i:zi=k di,k 16 Enew =

∑K
k=1

∑
i:zi=k di,k

−K lnN0 −
∑K
k=1 log Γ (Nk)

17 until Eold − Enew < ε 17until Eold − Enew < ε
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(a) Generated synthetic data (b) K-means (c) MAP-DP

Figure 1. Clustering performed by K-means and MAP-DP for spherical, synthetic
Gaussian data, with unequal cluster radii and density. The clusters are well-separated.
Data is equally distributed across clusters. Here, unlike MAP-DP, K-means fails to find
the correct clustering. Instead, it splits the data into three equal-volume regions
because it is insensitive to the differing cluster density. Different colours indicate the
different clusters.

2. The Euclidean distance entails that the average of the coordinates of data points
in a cluster is the centroid of that cluster (algorithm line 15). Euclidean space is
linear which implies that small changes in the data result in proportionately small
changes to the position of the cluster centroid. This is problematic when there are
outliers, that is, points which are unusually far away from the cluster centroid by
comparison to the rest of the points in that cluster. Such outliers can dramatically
impair the results of K-means (see Fig 3 and discussion in Section 5.3).

3. K-means clusters data points purely on their (Euclidean) geometric closeness to
the cluster centroid (algorithm line 9). Therefore, it does not take into account
the different densities of each cluster. So, because K-means implicitly assumes
each cluster occupies the same volume in data space, each cluster must contain
the same number of data points. We will show later that even when all other
implicit geometric assumptions of K-means are satisfied, it will fail to learn a
correct, or even meaningful, clustering when there are significant differences in
cluster density (see Fig 4 and Section 5.2).

4. The number K of groupings in the data is fixed and assumed known; this is rarely
the case in practice. Thus, K-means is quite inflexible and degrades badly when
the assumptions upon which it is based are even mildly violated by e.g. a tiny
number of outliers (see Fig 3 and discussion in Section 5.3).

Some of the above limitations of K-means have been addressed in the literature.
Regarding outliers, variations of K-means have been proposed that use more “robust”
estimates for the cluster centroids. For example, the K-medoids algorithm uses the point
in each cluster which is most centrally located. By contrast, in K-medians the median
of coordinates of all data points in a cluster is the centroid. However, both approaches
are far more computationally costly than K-means. K-medoids, requires computation
of a pairwise similarity matrix between data points which can be prohibitively expensive
for large data sets. In K-medians, the coordinates of cluster data points in each
dimension need to be sorted, which takes much more effort than computing the mean.

Provided that a transformation of the entire data space can be found which
“spherizes” each cluster, then the spherical limitation of K-means can be mitigated.
However, for most situations, finding such a transformation will not be trivial and is
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(a) Generated synthetic data (b) K-means (c) MAP-DP

Figure 2. Clustering solution obtained by K-means and MAP-DP for synthetic
elliptical Gaussian data. All clusters share exactly the same volume and density, but
one is rotated relative to the others. There is no appreciable overlap. K-means fails
because the objective function which it attempts to minimize measures the true
clustering solution as worse than the manifestly poor solution shown here.

usually as difficult as finding the clustering solution itself. Alternatively, by using the
Mahalanobis distance, K-means can be adapted to non-spherical clusters [13], but this
approach will encounter problematic computational singularities when a cluster has only
one data point assigned.

Addressing the problem of the fixed number of clusters K, note that it is not
possible to choose K simply by clustering with a range of values of K and choosing the
one which minimizes E. This is because K-means is nested: we can always decrease E
by increasing K, even when the true number of clusters is much smaller than K, since,
all other things being equal, K-means tries to create an equal-volume partition of the
data space. Therefore, data points find themselves ever closer to a cluster centroid as K
increases. In the extreme case for K = N (the number of data points), then K-means
will assign each data point to its own separate cluster and E = 0, which has no meaning
as a “clustering” of the data. Various extensions to K-means have been proposed which
circumvent this problem by regularization over K, e.g. Akaike (AIC) or Bayesian
information criteria (BIC), and we discuss this in more depth in Section 3).

So far, we have presented K-means from a geometric viewpoint. However, it can also
be profitably understood from a probabilistic viewpoint, as a restricted case of the
(finite) Gaussian mixture model (GMM). This is the starting point for us to introduce a
new algorithm which overcomes most of the limitations of K-means described above.

This new algorithm, which we call maximum a-posteriori Dirichlet process mixtures
(MAP-DP), is a more flexible alternative to K-means which can quickly provide
interpretable clustering solutions for a wide array of applications.

By contrast to K-means, MAP-DP can perform cluster analysis without specifying
the number of clusters. In order to model K we turn to a probabilistic framework where
K grows with the data size, also known as Bayesian non-parametric (BNP) models [14].
In particular, we use Dirichlet process mixture models (DP mixtures) where the number
of clusters can be estimated from data. To date, despite their considerable power,
applications of DP mixtures are somewhat limited due to the computationally expensive
and technically challenging inference involved [15, 16, 17]. Our new MAP-DP algorithm
is a computationally scalable and simple way of performing inference in DP mixtures.
Additionally, MAP-DP is model-based and so provides a consistent way of inferring
missing values from the data and making predictions for unknown data.

As a prelude to a description of the MAP-DP algorithm in full generality later in the
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(a) Generated synthetic data (b) K-means (c) MAP-DP

(d) Generated data (zoomed) (e) K-means (zoomed) (f) MAP-DP (zoomed)

Figure 3. Clustering performed by K-means and MAP-DP for spherical, synthetic
Gaussian data, with outliers. All clusters have the same radii and density. There are
two outlier groups with two outliers in each group. K-means fails to find a good
solution where MAP-DP succeeds; this is because K-means puts some of the outliers in
a separate cluster, thus inappropriately using up one of the K = 3 clusters. This
happens even if all the clusters are spherical, equal radii and well-separated.

paper, we introduce a special (simplified) case, Algorithm 2, which illustrates the key
similarities and differences to K-means (for the case of spherical Gaussian data with
known cluster variance; in Section 4 we will present the MAP-DP algorithm in full
generality, removing this spherical restriction):

• The number of clusters K is not fixed but inferred from the data. The algorithm
is initialized with K = 1 and all data points assigned to one cluster (MAP-DP
algorithm line 1). In the assignment step (algorithm line 11), a choice is made
between assigning the current data point to one of the existing clusters (algorithm
line 9) or assigning it to a prior cluster located at µ0 with variance σ2

0 (algorithm
line 10). When σ−ik ≈ σ2

0 and the current data point is the same distance from µ0
and from the current most likely cluster centroid µ−ik , a new cluster is created
(algorithm lines 12, 13) only if the prior count (concentration) parameter
N0 > N−ik . In other words, all other things being geometrically similar, only the
relative counts of the number of data points in each cluster, and the prior count,
determines whether a new cluster is created or not. By contrast, if σ−ik is very
different from σ2

0 , then the geometry largely determines the creation of new
clusters: if a data point is closer to the prior location µ0 than to any other most
likely existing cluster centroid, µ−ik , then a new cluster is created.

• In this spherical variant of MAP-DP, as with K-means, the Euclidean metric
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1
2 ‖.‖

2
2 is used to compute distances to cluster centroids (algorithm lines 9, 10).

However, in MAP-DP, the log of N−ik is subtracted from this distance when
updating assignments (algorithm line 11). Also, the composite variance σ−ik + σ̂2

features in the distance calculations such that the smaller σ−ik + σ̂2 becomes, the
less important the number of data points in the cluster N−ik becomes to the
assignment. In that case, the algorithm behaves much like K-means. But, if
σ−ik + σ̂2 becomes large, then, if a cluster already has many data points assigned
to it, it is more likely that the current data point is assigned to that cluster (in
other words, clusters exhibit a “rich-get-richer” effect). MAP-DP thereby takes
into account the density of clusters, unlike K-means. We can see σ−ik + σ̂2 as
controlling the “balance” between geometry and density.

• MAP-DP directly estimates only cluster assignments, while K-means also finds
the most likely cluster centroids given the current cluster assignments. But, since
the cluster assignment estimates may be significantly in error, this error will
propagate to the most likely cluster centroid locations. By contrast, MAP-DP
never explicitly estimates cluster centroids, they are treated as appropriately
uncertain quantities described by a most likely cluster location µ−ik and variance
σ−ik (the centroid hyper parameters). This means that MAP-DP does not need
explicit values of the cluster centroids on initialization (K-means algorithm line 1).
Indeed, with K-means, poor choices of these initial cluster centroids can cause the
algorithm to fall into sub-optimal configurations from which it cannot recover,
and there is, generally, no known universal way to pick “good” initial centroids.
At the same time, during iterations of the algorithm, MAP-DP can bypass
sub-optimal, erroneous configurations that K-means cannot avoid. This also
means that MAP-DP often converges in many fewer iterations than K-means. As
we discuss in Appendix D cluster centroids and variances can be obtained in
MAP-DP if needed after the algorithm has converged.

• The cluster hyper parameters are updated explicitly for each data point in turn
(algorithm lines 7, 8). This updating is a weighted sum of prior location µ0 and
the mean of the data currently assigned to each cluster. If the prior variance
parameter σ2

0 is large or the known cluster variance σ̂2 is small, then µk is just the
mean of the data in cluster k, as with K-means. By contrast, if the prior variance
is small (or the known cluster variance σ̂2 is large), then µk ≈ µ0, the prior
centroid location. So, intuitively, the most likely location of the cluster centroid is
based on an appropriate “balance” between the confidence we have in the data in
each cluster and our prior information about the cluster centroid location.

• While K-means estimates only the cluster centroids, this spherical Gaussian
variant of MAP-DP has an additional cluster variance parameter σ̂2, effectively
determining the radius of the clusters. If the prior variance σ2

0 or the cluster
variance σ̂2 are small, then σ−ik becomes small. This is the situation where we
have high confidence in the most likely cluster centroid µk. If, on the other hand,
the prior variance σ2

0 is large, then σ−ik ≈ σ̂2

N−i
k

. Intuitively, if we have little trust
in the prior location µ0, the more data in each cluster, the better the estimate of
the most likely cluster centroid. Finally, for large cluster variance σ̂2, then
σ−ik ≈ σ2

0 , so that the uncertainty in the most likely cluster centroid defaults to
that of the prior.

A summary of the paper is as follows. In Section 2 we review the K-means algorithm
and its derivation as a constrained case of a GMM. Section 3 covers alternative ways of
choosing the number of clusters. In Section 4 the novel MAP-DP clustering algorithm is
presented, and the performance of this new algorithm is evaluated in Section 5 on
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(a) Generated synthetic data (b) K-means (c) MAP-DP

Figure 4. Clustering performed by K-means and MAP-DP for spherical, synthetic
Gaussian data. Cluster radii are equal and clusters are well-separated, but the data is
unequally distributed across clusters: 69% of the data is in the blue cluster, 29% in the
yellow, 2% is orange. K-means fails to find a meaningful solution, because, unlike
MAP-DP, it cannot adapt to different cluster densities, even when the clusters are
spherical, have equal radii and are well-separated.

synthetic data. In Section 6 we apply MAP-DP to explore phenotyping of parkinsonism,
and we conclude in Section 8 with a summary of our findings and a discussion of
limitations and future directions.

2 A probabilistic interpretation of K-means
In order to improve on the limitations of K-means, we will invoke an interpretation
which views it as an inference method for a specific kind of mixture model. While
K-means is essentially geometric, mixture models are inherently probabilistic, that is,
they involve fitting a probability density model to the data. The advantage of
considering this probabilistic framework is that it provides a mathematically principled
way to understand and address the limitations of K-means. It is well known that
K-means can be derived as an approximate inference procedure for a special kind of
finite mixture model. For completeness, we will rehearse the derivation here.

2.1 Finite mixture models
In the GMM (p. 430-439 in [18]) we assume that data points are drawn from a mixture
(a weighted sum) of Gaussian distributions with density p (x) =

∑K
k=1 πkN (x |µk,Σk ),

where K is the fixed number of components, πk > 0 are the weighting coefficients with∑K
k=1 πk = 1, and µk, Σk are the parameters of each Gaussian in the mixture. So, to

produce a data point xi, the model first draws a cluster assignment zi = k. The
distribution over each zi is known as a categorical distribution with K parameters
πk = p (zi = k). Then, given this assignment, the data point is drawn from a Gaussian
with mean µzi

and covariance Σzi
.

Under this model, the conditional probability of each data point is
p (xi |zi = k ) = N (xi |µk,Σk ), which is just a Gaussian. But an equally important
quantity is the probability we get by reversing this conditioning: the probability of an
assignment zi given a data point x (sometimes called the responsibility),
p (zi = k |x, µk,Σk ). This raises an important point: in the GMM, a data point has a
finite probability of belonging to every cluster, whereas, for K-means each point belongs
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to only one cluster. This is because the GMM is not a partition of the data: the
assignments zi are treated as random draws from a distribution.

One of the most popular algorithms for estimating the unknowns of a GMM from
some data (that is the variables z, µ, Σ and π) is the Expectation-Maximization (E-M)
algorithm. This iterative procedure alternates between the E (expectation) step and the
M (maximization) steps. The E-step uses the responsibilities to compute the cluster
assignments, holding the cluster parameters fixed, and the M-step re-computes the
cluster parameters holding the cluster assignments fixed:

E-step: Given the current estimates for the cluster parameters, compute the
responsibilities:

γi,k = p (zi = k |x, µk,Σk ) = πkN (xi |µk,Σk )∑K
j=1 πjN (xi |µj ,Σj )

(2)

M-step: Compute the parameters that maximize the likelihood of the data set
p (X |π, µ,Σ, z ), which is the probability of all of the data under the GMM [19]:

p (X |π, µ,Σ, z ) =
N∏
i=1

K∑
k=1

πkN (xi |µk,Σk ) (3)

Maximizing this with respect to each of the parameters can be done in closed form:

Sk =
∑N
i=1 γi,k πk = Sk

N

µk = 1
Sk

∑N
i=1 γi,kxi Σk = 1

Sk

∑N
i=1 γi,k (xi − µk) (xi − µk)T (4)

Each E-M iteration is guaranteed not to decrease the likelihood function
p (X |π, µ,Σ, z ). So, as with K-means, convergence is guaranteed, but not necessarily to
the global maximum of the likelihood. We can, alternatively, say that the E-M
algorithm attempts to minimize the GMM objective function:

E = −
N∑
i=1

ln
K∑
k=1

πkN (xi |µk,Σk ) (5)

When changes in the likelihood are sufficiently small the iteration is stopped.

2.2 Connection to K-means
We can derive the K-means algorithm from E-M inference in the GMM model discussed
above. Consider a special case of a GMM where the covariance matrices of the mixture
components are spherical and shared across components. That means Σk = σI for
k = 1, ...,K, where I is the D ×D identity matrix, with the variance σ > 0. We will
also assume that σ is a known constant. Then the E-step above simplifies to:

γi,k =
πk exp

(
− 1

2σ ‖xi − µk‖
2
2

)
∑K
j=1 πj exp

(
− 1

2σ ‖xi − µj‖
2
2

) (6)

The M-step no longer updates the values for Σk at each iteration, but otherwise it
remains unchanged.

Now, let us further consider shrinking the constant variance term to 0: σ → 0. At
this limit, the responsibility probability (6) takes the value 1 for the component which is
closest to xi. That is, of course, the component for which the (squared) Euclidean
distance 1

2 ‖xi − µk‖
2
2 is minimal. So, all other components have responsibility 0. Also

at the limit, the categorical probabilities πk cease to have any influence. In effect, the

9/35



E-step of E-M behaves exactly as the assignment step of K-means. Similarly, since πk
has no effect, the M-step re-estimates only the mean parameters µk, which is now just
the sample mean of the data which is closest to that component.

To summarize, if we assume a probabilistic GMM model for the data with fixed,
identical spherical covariance matrices across all clusters and take the limit of the
cluster variances σ → 0, the E-M algorithm becomes equivalent to K-means. This has,
more recently, become known as the small variance asymptotic (SVA) derivation of
K-means clustering [20].

3 Inferring K, the number of clusters
The GMM (Section 2.1) and mixture models in their full generality, are a principled
approach to modeling the data beyond purely geometrical considerations. As such,
mixture models are useful in overcoming the equal-radius, equal-density spherical
cluster limitation of K-means. Nevertheless, it still leaves us empty-handed on choosing
K as in the GMM this is a fixed quantity.

The choice of K is a well-studied problem and many approaches have been proposed
to address it. As discussed above, the K-means objective function (1) cannot be used to
select K as it will always favor the larger number of components. Probably the most
popular approach is to run K-means with different values of K and use a regularization
principle to pick the best K. For instance in Pelleg and Moore [21], BIC is used.
Bischof et al. [22] use minimum description length (MDL) regularization, starting with
a value of K which is larger than the expected true value for K in the given application,
and then removes centroids until changes in description length are minimal. By
contrast, Hamerly and Elkan [23] suggest starting K-means with one cluster and
splitting clusters until points in each cluster have a Gaussian distribution. An obvious
limitation of this approach would be that the Gaussian distributions for each cluster
need to be spherical. In Gao et al. [24] the choice of K is explored in detail leading to
the deviance information criterion (DIC) as regularizer. DIC is most convenient in the
probabilistic framework as it can be readily computed using Markov chain Monte Carlo
(MCMC). In addition, DIC can be seen as a hierarchical generalization of BIC and AIC.

All these regularization schemes consider ranges of values of K and must perform
exhaustive restarts for each value of K. This increases the computational burden. By
contrast, our MAP-DP algorithm is based on a model in which the number of clusters is
just another random variable in the model (such as the assignments zi). So, K is
estimated as an intrinsic part of the algorithm in a more computationally efficient way.

As argued above, the likelihood function in GMM (3) and the sum of Euclidean
distances in K-means (1) cannot be used to compare the fit of models for different K,
because this is an ill-posed problem that cannot detect overfitting. A natural way to
regularize the GMM is to assume priors over the uncertain quantities in the model, in
other words to turn to Bayesian models. Placing priors over the cluster parameters
smooths out the cluster shape and penalizes models that are too far away from the
expected structure [25]. Also, placing a prior over the cluster weights provides more
control over the distribution of the cluster densities. The key in dealing with the
uncertainty about K is in the prior distribution we use for the cluster weights πk, as we
will show.

In MAP-DP, instead of fixing the number of components, we will assume that the
more data we observe the more clusters we will encounter. For many applications this is
a reasonable assumption; for example, if our aim is to extract different variations of a
disease given some measurements for each patient, the expectation is that with more
patient records more subtypes of the disease would be observed. As another example,
when extracting topics from a set of documents, as the number and length of the
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(a) Generated synthetic data (b) K-means (c) MAP-DP

Figure 5. Clustering solution obtained by K-means and MAP-DP for synthetic
elliptical Gaussian data. The clusters are trivially well-separated, and even though they
have different densities (12% of the data is blue, 28% yellow cluster, 60% orange) and
elliptical cluster geometries, K-means produces a near-perfect clustering, as with
MAP-DP. This shows that K-means can in some instances work when the clusters are
not equal radii with shared densities, but only when the clusters are so well-separated
that the clustering can be trivially performed by eye.

documents increases, the number of topics is also expected to increase. When clustering
similar companies to construct an efficient financial portfolio, it is reasonable to assume
that the more companies are included in the portfolio, a larger variety of company
clusters would occur.

Formally, this is obtained by assuming that K →∞ as N →∞, but with K
growing more slowly than N to provide a meaningful clustering. But, for any finite set
of data points, the number of clusters is always some unknown but finite K+ that can
be inferred from the data. The parametrization of K is avoided and instead the model
is controlled by a new parameter N0 called the concentration parameter or prior count.
This controls the rate with which K grows with respect to N . Additionally, because
there is a consistent probabilistic model, N0 may be estimated from the data by
standard methods such as maximum likelihood and cross-validation as we discuss in
Appendix G.

4 Generalized MAP-DP algorithm
Before presenting the model underlying MAP-DP (Section 4.2) and detailed algorithm
(Section 4.3), we give an overview of a key probabilistic structure known as the Chinese
restaurant process (CRP). The latter forms the theoretical basis of our approach
allowing the treatment of K as an unbounded random variable.

4.1 The Chinese restaurant process (CRP)
In clustering, the essential discrete, combinatorial structure is a partition of the data set
into a finite number of groups, K. The CRP is a probability distribution on these
partitions, and it is parametrized by the prior count parameter N0 and the number of
data points N . For a partition example, let us assume we have data set
X = (x1, . . . , xN ) of just N = 8 data points, one particular partition of this data is the
set {{x1, x2} , {x3, x5, x7} , {x4, x6} , {x8}}. In this partition there are K = 4 clusters
and the cluster assignments take the values z1 = z2 = 1, z3 = z5 = z7 = 2, z4 = z6 = 3
and z8 = 4. So, we can also think of the CRP as a distribution over cluster assignments.
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The CRP is often described using the metaphor of a restaurant, with data points
corresponding to customers and clusters corresponding to tables. Customers arrive at
the restaurant one at a time. The first customer is seated alone. Each subsequent
customer is either seated at one of the already occupied tables with probability
proportional to the number of customers already seated there, or, with probability
proportional to the parameter N0, the customer sits at a new table. We use k to denote
a cluster index and Nk to denote the number of customers sitting at table k. With this
notation, we can write the probabilistic rule characterizing the CRP:

p (customer i+ 1 joins table k) =
{

Nk

N0+i if k is an existing table
N0
N0+i if k is a new table

(7)

After N customers have arrived and so i has increased from 1 to N , their seating
pattern defines a set of clusters that have the CRP distribution. This partition is
random, and thus the CRP is a distribution on partitions and we will denote a draw
from this distribution as:

(z1, . . . , zN ) ∼ CRP (N0, N) (8)

Further, we can compute the probability over all cluster assignment variables, given that
they are a draw from a CRP:

p (z1, . . . , zN ) = NK
0

N
(N)
0

K∏
k=1

(Nk − 1)! (9)

where N (N)
0 = N0 (N0 + 1)× · · · × (N0 +N − 1). This probability is obtained from a

product of the probabilities in (7). If there are exactly K tables, customers have sat on
a new table exactly K times, explaining the term NK

0 in the expression. The
probability of a customer sitting on an existing table k has been used Nk − 1 times
where each time the numerator of the corresponding probability has been increasing,
from 1 to Nk − 1. This is how the term

∏K
k=1 (Nk − 1)! arises. The N (N)

0 is the product
of the denominators when multiplying the probabilities from (7), as N = 1 at the start
and increases to N − 1 for the last seated customer.

Notice that the CRP is solely parametrized by the number of customers (data
points) N and the concentration parameter N0 that controls the probability of a
customer sitting at a new, unlabeled table. We can see that the parameter N0 controls
the rate of increase of the number of tables in the restaurant as N increases. It is
usually referred to as the concentration parameter because it controls the typical
density of customers seated at tables.

We can think of there being an infinite number of unlabeled tables in the restaurant
at any given point in time, and when a customer is assigned to a new table, one of the
unlabeled ones is chosen arbitrarily and given a numerical label. We can think of the
number of unlabeled tables as K, where K →∞ and the number of labeled tables
would be some random, but finite K+ < K that could increase each time a new
customer arrives.

4.2 The underlying probabilistic model
First, we will model the distribution over the cluster assignments z1, . . . , zN with a
CRP (in fact, we can derive the CRP from the assumption that the mixture weights
π1, . . . , πK of the finite mixture model, Section 2.1, have a DP prior ; see Teh [26] for a
detailed exposition of this fascinating and important connection). We will also place
priors over the other random quantities in the model, the cluster parameters. We will
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restrict ourselves to assuming conjugate priors for computational simplicity (however,
this assumption is not essential and there is extensive literature on using non-conjugate
priors in this context [16, 27, 28]).

As we are mainly interested in clustering applications, i.e. we are only interested in
the cluster assignments z1, . . . , zN , we can gain computational efficiency [29] by
integrating out the cluster parameters (this process of eliminating random variables in
the model which are not of explicit interest is known as Rao-Blackwellization [30]). The
resulting probabilistic model, called the CRP mixture model by Gershman and Blei [31],
is:

(z1, . . . , zN ) ∼ CRP (N0, N)
xi ∼ f (θzi

) (10)

where θ are the hyper parameters of the predictive distribution f (x|θ). Detailed
expressions for this model for some different data types and distributions are given in
Appendix A. To summarize: we will assume that data is described by some random K+

number of predictive distributions describing each cluster where the randomness of K+

is parametrized by N0, and K+ increases with N , at a rate controlled by N0.

4.3 MAP-DP algorithm
Much as K-means can be derived from the more general GMM, we will derive our novel
clustering algorithm based on the model (10) above. The likelihood of the data X is:

p (X, z|N0) =p (z1, . . . , zN )
N∏
i=1

K∏
k=1

f
(
xi|θ−ik

)
δ(zi,k) (11)

where δ (x, y) = 1 if x = y and 0 otherwise. The distribution p (z1, . . . , zN ) is the CRP
(9). For ease of subsequent computations, we use the negative log of (11):

E = −
K∑
k=1

∑
i:zi=k

ln f
(
xi|θ−ik

)
−K lnN0 −

K∑
k=1

ln Γ (Nk)− C (N0, N) (12)

where C (N0, N) = ln Γ(N0)
Γ(N0+N) is a function which depends upon only N0 and N . This

can be omitted in the MAP-DP algorithm because it does not change over iterations of
the main loop but should be included when estimating N0 using the methods proposed
in Appendix G. The quantity (12) plays an analogous role to the objective function (1)
in K-means. We wish to maximize (11) over the only remaining random quantity in
this model: the cluster assignments z1, . . . , zN , which is equivalent to minimizing (12)
with respect to z. This minimization is performed iteratively by optimizing over each
cluster indicator zi, holding the rest, zj:j 6=i, fixed. This is our MAP-DP algorithm,
described in Algorithm 3 below.

For each data point xi, given zi = k, we first update the posterior cluster hyper
parameters θ−ik based on all data points assigned to cluster k, but excluding the data
point xi [16]. This update allows us to compute the following quantities for each
existing cluster k ∈ 1, . . .K, and for a new cluster K + 1:

di,k = − ln f
(
xi|θ−ik

)
di,K+1 = − ln f (xi|θ0)

(13)

Now, the quantity di,k − lnN−ik is the negative log of the probability of assigning
data point xi to cluster k, or if we abuse notation somewhat and define N−iK+1 ≡ N0,
assigning instead to a new cluster K + 1. Therefore, the MAP assignment for xi is
obtained by computing zi = arg mink∈1,...,,K+1

[
di,k − lnN−ik

]
. Then the algorithm
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(a) Generated synthetic data (b) K-means (c) MAP-DP

Figure 6. Clustering solution obtained by K-means and MAP-DP for overlapping,
synthetic elliptical Gaussian data. All clusters have different elliptical covariances, and
the data is unequally distributed across different clusters (30% blue cluster, 5% yellow
cluster, 65% orange). The significant overlap is challenging even for MAP-DP, but it
produces a meaningful clustering solution where the only mislabelled points lie in the
overlapping region. K-means does not produce a clustering result which is faithful to
the actual clustering.

moves on to the next data point xi+1. Detailed expressions for different data types and
corresponding predictive distributions f are given in Appendix A, including the
spherical Gaussian case given in Algorithm 2.

The objective function (12) is used to assess convergence, and when changes between
successive iterations are smaller than ε, the algorithm terminates. MAP-DP is
guaranteed not to increase (12) at each iteration and therefore the algorithm will
converge [25]. By contrast to SVA-based algorithms, the closed form likelihood (11) can
be used to estimate hyper parameters, such as the concentration parameter N0 (see
Appendix G), and can be used to make predictions for new x data (see Appendix E). In
contrast to K-means, there exists a well founded, model-based way to infer K from data.

We summarize all the steps in Algorithm 3. The issue of randomisation and how it
can enhance the robustness of the algorithm is discussed in Appendix C. During the
execution of both K-means and MAP-DP empty clusters may be allocated and this can
effect the computational performance of the algorithms; we discuss this issue in
Appendix B.

For multivariate data a particularly simple form for the predictive density is to
assume independent features. This means that the predictive distributions f (x|θ) over
the data will factor into products with M terms, f (x|θ) =

∏M
m=1 f (xm|θm) where

xm, θm denotes the data and parameter vector for the m-th feature respectively. We
term this the elliptical model. Including different types of data such as counts and real
numbers is particularly simple in this model as there is no dependency between features.
We demonstrate its utility in Section 6 where a multitude of data types is modeled.
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Algorithm 3: MAP-DP (generalized algorithm)

Input x1, . . . , xN : data
ε > 0: convergence threshold
N0: prior count
θ0: prior hyper parameters

Output z1, . . . , zN : cluster assignments
K: number of clusters

1 K = 1, zi = 1 for all i ∈ 1, . . . , N
2 Enew =∞
3 repeat
4 Eold = Enew
5 for i ∈ 1, . . . , N
6 for k ∈ 1, . . . ,K
7 Update cluster hyper parameters θ−ik (see Appendix A)
8 di,k = − ln f

(
xi|θ−ik

)
9 di,K+1 = − ln f (xi|θ0)

10 zi = arg mink∈1,...,K+1
[
di,k − lnN−ik

]
11 if zi = K + 1
12 K = K + 1
13 Enew =

∑K
k=1

∑
i:zi=k di,k −K lnN0 −

∑K
k=1 log Γ (Nk)

14 until Eold − Enew < ε

5 Study of synthetic data
In this section we evaluate the performance of the MAP-DP algorithm on six different
synthetic Gaussian data sets with N = 4000 points. All these experiments use
multivariate normal distribution with multivariate Student-t predictive distributions
f (x |θ ) (see Appendix A). The data sets have been generated to demonstrate some of
the non-obvious problems with the K-means algorithm. Comparisons between
MAP-DP, K-means, E-M and the Gibbs sampler demonstrate the ability of MAP-DP
to overcome those issues with minimal computational and conceptual “overhead”. Both
the E-M algorithm and the Gibbs sampler can also be used to overcome most of those
challenges, however both aim to estimate the posterior density rather than clustering
the data and so require significantly more computational effort.

The true clustering assignments are known so that the performance of the different
algorithms can be objectively assessed. For the purpose of illustration we have
generated two-dimensional data with three, visually separable clusters, to highlight the
specific problems that arise with K-means. To ensure that the results are stable and
reproducible, we have performed multiple restarts for K-means, MAP-DP and E-M to
avoid falling into obviously sub-optimal solutions. MAP-DP restarts involve a random
permutation of the ordering of the data.

K-means and E-M are restarted with randomized parameter initializations. Note
that the initialization in MAP-DP is trivial as all points are just assigned to a single
cluster, furthermore, the clustering output is less sensitive to this type of initialization.
At the same time, K-means and the E-M algorithm require setting initial values for the
cluster centroids µ1, . . . , µK , the number of clusters K and in the case of E-M, values
for the cluster covariances Σ1, . . . ,ΣK and cluster weights π1, . . . , πK . The clustering
output is quite sensitive to this initialization: for the K-means algorithm we have used
the seeding heuristic suggested in [32] for initialiazing the centroids (also known as the
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Table 1. Comparing the clustering performance of MAP-DP (multivariate normal
variant), K-means, E-M and Gibbs sampler in terms of NMI which has range [0, 1] on
synthetic Gaussian data generated using a GMM with K = 3. NMI closer to 1 indicates
better clustering.
Geometry Shared

geometry?
Shared
popula-
tion?

Section NMI
K-

means

NMI
MAP-
DP

NMI
E-M

NMI
Gibbs

Spherical No Yes 5.1 0.57 0.97 0.89 0.92
Spherical Yes No 5.2 0.48 0.98 0.98 0.86
Spherical Yes Yes 5.3 0.67 0.93 0.65 0.91
Elliptical No Yes 5.4 0.56 0.98 0.93 0.90
Elliptical No No 5.5 1.00 1.00 0.99 1.00
Elliptical No No 5.6 0.56 0.88 0.86 0.84

K-means++ algorithm); herein the E-M has been given an advantage and is initialized
with the true generating parameters leading to quicker convergence. In all of the
synthethic experiments, we fix the prior count to N0 = 3 for both MAP-DP and Gibbs
sampler and the prior hyper parameters θ0 are evaluated using empirical bayes (see
Appendix G).

To evaluate algorithm performance we have used normalized mutual information
(NMI) between the true and estimated partition of the data (Table 1). The NMI
between two random variables is a measure of mutual dependence between them that
takes values between 0 and 1 where the higher score means stronger dependence. NMI
scores close to 1 indicate good agreement between the estimated and true clustering of
the data.

We also test the ability of regularization methods discussed in Section 3 to lead to
sensible conclusions about the underlying number of clusters K in K-means. We use
the BIC as a representative and popular approach from this class of methods. For all of
the data sets in Sections 5.1 to 5.6, we vary K between 1 and 20 and repeat K-means
100 times with randomized initializations. That is, we estimate BIC score for K-means
at convergence for K = 1, . . . , 20 and repeat this cycle 100 times to avoid conclusions
based on sub-optimal clustering results. The theory of BIC suggests that, on each cycle,
the value of K between 1 and 20 that maximizes the BIC score is the optimal K for the
algorithm under test. We report the value of K that maximizes the BIC score over all
cycles.

We also report the number of iterations to convergence of each algorithm in Table 2
as an indication of the relative computational cost involved, where the iterations include
only a single run of the corresponding algorithm and ignore the number of restarts. The
Gibbs sampler was run for 600 iterations for each of the data sets and we report the
number of iterations until the draw from the chain that provides the best fit of the
mixture model. Running the Gibbs sampler for a longer number of iterations is likely to
improve the fit. Due to its stochastic nature, random restarts are not common practice
for the Gibbs sampler.

5.1 Spherical data, unequal cluster radius and density
In this example we generate data from three spherical Gaussian distributions with
different radii. The data is well separated and there is an equal number of points in
each cluster. In Fig 1 we can see that K-means separates the data into three almost
equal-volume clusters. In K-means clustering, volume is not measured in terms of the
density of clusters, but rather the geometric volumes defined by hyper-planes separating
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Table 2. Number of iterations to convergence of MAP-DP, K-means, E-M and Gibbs
sampling where one iteration consists of a full sweep through the data and the model
parameters. The computational cost per iteration is not exactly the same for different
algorithms, but it is comparable. The number of iterations due to randomized restarts
have not been included.

Section Convergence
K-means

Convergence
MAP-DP

Convergence
E-M

Convergence
Gibbs
sampler

5.1 6 11 10 299
5.2 13 5 21 403
5.3 5 5 32 292
5.4 15 11 6 330
5.5 6 7 21 459
5.6 9 11 7 302

the clusters. The algorithm does not take into account cluster density, and as a result it
splits large radius clusters and merges small radius ones. This would obviously lead to
inaccurate conclusions about the structure in the data. It is unlikely that this kind of
clustering behavior is desired in practice for this dataset. The poor performance of
K-means in this situation reflected in a low NMI score (0.57, Table 1). By contrast,
MAP-DP takes into account the density of each cluster and learns the true underlying
clustering almost perfectly (NMI of 0.97). This shows that K-means can fail even when
applied to spherical data, provided only that the cluster radii are different. Assuming
the number of clusters K is unknown and using K-means with BIC, we can estimate
the true number of clusters K = 3, but this involves defining a range of possible values
for K and performing multiple restarts for each value in that range. Considering a
range of values of K between 1 and 20 and performing 100 random restarts for each
value of K, the estimated value for the number of clusters is K = 2, an underestimate of
the true number of clusters K = 3. The highest BIC score occurred after 15 cycles of K
between 1 and 20 and as a result, K-means with BIC required significantly longer run
time than MAP-DP, to correctly estimate K.

5.2 Spherical data, equal cluster radius, unequal density
In this next example, data is generated from three spherical Gaussian distributions with
equal radii, the clusters are well-separated, but with a different number of points in each
cluster. In Fig 4 we observe that the most populated cluster containing 69% of the data
is split by K-means, and a lot of its data is assigned to the smallest cluster. So, despite
the unequal density of the true clusters, K-means divides the data into three almost
equally-populated clusters. Again, this behaviour is non-intuitive: it is unlikely that the
K-means clustering result here is what would be desired or expected, and indeed,
K-means scores badly (NMI of 0.48) by comparison to MAP-DP which achieves near
perfect clustering (NMI of 0.98. Table 1). The reason for this poor behaviour is that, if
there is any overlap between clusters, K-means will attempt to resolve the ambiguity by
dividing up the data space into equal-volume regions. This will happen even if all the
clusters are spherical with equal radius. Again, assuming that K is unknown and
attempting to estimate using BIC, after 100 runs of K-means across the whole range of
K, we estimate that K = 2 maximizes the BIC score, again an underestimate of the
true number of clusters K = 3.
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5.3 Spherical data, equal cluster radius and density, with
outliers

Next we consider data generated from three spherical Gaussian distributions with equal
radii and equal density of data points. However, we add two pairs of outlier points,
marked as stars in Fig 3. We see that K-means groups together the top right outliers
into a cluster of their own. As a result, one of the pre-specified K = 3 clusters is wasted
and there are only two clusters left to describe the actual spherical clusters. So,
K-means merges two of the underlying clusters into one and gives misleading clustering
for at least a third of the data. For this behavior of K-means to be avoided, we would
need to have information not only about how many groups we would expect in the data,
but also how many outlier points might occur. By contrast, since MAP-DP estimates
K, it can adapt to the presence of outliers. MAP-DP assigns the two pairs of outliers
into separate clusters to estimate K = 5 groups, and correctly clusters the remaining
data into the three true spherical Gaussians. Again, K-means scores poorly (NMI of
0.67) compared to MAP-DP (NMI of 0.93, Table 1). From this it is clear that K-means
is not “robust” to the presence of even a trivial number of outliers, which can severely
degrade the quality of the clustering result. For many applications, it is infeasible to
remove all of the outliers before clustering, particularly when the data is
high-dimensional. If we assume that K is unknown for K-means and estimate it using
the BIC score, we estimate K = 4, an overestimate of the true number of clusters
K = 3. We further observe that even the E-M algorithm with Gaussian components
does not handle outliers well and the nonparametric MAP-DP and Gibbs sampler are
clearly the more robust option in such scenarios.

5.4 Elliptical data with equal cluster volumes and densities,
rotated

So far, in all cases above the data is spherical. By contrast, we next turn to
non-spherical, in fact, elliptical data. This next experiment demonstrates the inability
of K-means to correctly cluster data which is trivially separable by eye, even when the
clusters have negligible overlap and exactly equal volumes and densities, but simply
because the data is non-spherical and some clusters are rotated relative to the others.
Fig 2 shows that K-means produces a very misleading clustering in this situation. 100
random restarts of K-means fail to find any better clustering, with K-means scoring
badly (NMI of 0.56) by comparison to MAP-DP (0.98, Table 1). In fact, for this data,
we find that even if K-means is initialized with the true cluster assignments, this is not
a fixed point of the algorithm and K-means will continue to degrade the true clustering
and converge on the poor solution shown in Fig 2. So, this clustering solution obtained
at K-means convergence, as measured by the objective function value E (1), appears to
actually be better (i.e. lower) than the true clustering of the data. Essentially, for some
non-spherical data, the objective function which K-means attempts to minimize is
fundamentally incorrect: even if K-means can find a small value of E, it is solving the
wrong problem. Furthermore, BIC does not provide us with a sensible conclusion for
the correct underlying number of clusters, as it estimates K = 9 after 100 randomized
restarts.

It should be noted that in some rare, non-spherical cluster cases, global
transformations of the entire data can be found to “spherize” it. For example, if the
data is elliptical and all the cluster covariances are the same, then there is a global
linear transformation which makes all the clusters spherical. However, finding such a
transformation, if one exists, is likely at least as difficult as first correctly clustering the
data.
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5.5 Elliptical data with different cluster volumes, geometries
and densities, no cluster overlap

This data is generated from three elliptical Gaussian distributions with different
covariances and different number of points in each cluster. In this case, despite the
clusters not being spherical, equal density and radius, the clusters are so well-separated
that K-means, as with MAP-DP, can perfectly separate the data into the correct
clustering solution (see Fig 5). So, for data which is trivially separable by eye, K-means
can produce a meaningful result. However, it is questionable how often in practice one
would expect the data to be so clearly separable, and indeed, whether computational
cluster analysis is actually necessary in this case. Even in this trivial case, the value of
K estimated using BIC is K = 4, an overestimate of the true number of clusters K = 3.

5.6 Elliptical data with different cluster volumes and densities,
significant overlap

Having seen that MAP-DP works well in cases where K-means can fail badly, we will
examine a clustering problem which should be a challenge for MAP-DP. The data is
generated from three elliptical Gaussian distributions with different covariances and
different number of points in each cluster. There is significant overlap between the
clusters. MAP-DP manages to correctly learn the number of clusters in the data and
obtains a good, meaningful solution which is close to the truth (Fig 6, NMI score 0.88,
Table 1). The small number of data points mislabeled by MAP-DP are all in the
overlapping region. By contrast, K-means fails to perform a meaningful clustering
(NMI score 0.56) and mislabels a large fraction of the data points that are outside the
overlapping region. This shows that MAP-DP, unlike K-means, can easily
accommodate departures from sphericity even in the context of significant cluster
overlap. As the cluster overlap increases, MAP-DP degrades but always leads to a much
more interpretable solution than K-means. In this example, the number of clusters can
be correctly estimated using BIC.

6 Example application: sub-typing of parkinsonism
and Parkinson’s disease

Parkinsonism is the clinical syndrome defined by the combination of bradykinesia
(slowness of movement) with tremor, rigidity or postural instability. This clinical
syndrome is most commonly caused by Parkinson’s disease (PD), although can be
caused by drugs or other conditions such as multi-system atrophy. Because of the
common clinical features shared by these other causes of parkinsonism, the clinical
diagnosis of PD in vivo is only 90% accurate when compared to post-mortem studies.
This diagnostic difficulty is compounded by the fact that PD itself is a heterogeneous
condition with a wide variety of clinical phenotypes, likely driven by different disease
processes. These include wide variations in both the motor (movement, such as tremor
and gait) and non-motor symptoms (such as cognition and sleep disorders). While the
motor symptoms are more specific to parkinsonism, many of the non-motor symptoms
associated with PD are common in older patients which makes clustering these
symptoms more complex. Despite significant advances, the aetiology (underlying cause)
and pathogenesis (how the disease develops) of this disease remain poorly understood,
and no disease modifying treatment has yet been found.

The diagnosis of PD is therefore likely to be given to some patients with other
causes of their symptoms. Also, even with the correct diagnosis of PD, they are likely to
be affected by different disease mechanisms which may vary in their response to
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treatments, thus reducing the power of clinical trials. Despite numerous attempts to
classify PD into sub-types using empirical or data-driven approaches (using mainly
K-means cluster analysis), there is no widely accepted consensus on classification.

One approach to identifying PD and its subtypes would be through appropriate
clustering techniques applied to comprehensive data sets representing many of the
physiological, genetic and behavioral features of patients with parkinsonism. We expect
that a clustering technique should be able to identify PD subtypes as distinct from
other conditions. In that context, using methods like K-means and finite mixture
models would severely limit our analysis as we would need to fix a-priori the number of
sub-types K for which we are looking. Estimating that K is still an open question in PD
research. Potentially, the number of sub-types is not even fixed, instead, with increasing
amounts of clinical data on patients being collected, we might expect a growing number
of variants of the disease to be observed. A natural probabilistic model which
incorporates that assumption is the DP mixture model. Here we make use of MAP-DP
clustering as a computationally convenient alternative to fitting the DP mixture.

We have analyzed the data for 527 patients from the PD data and organizing center
(PD-DOC) clinical reference database, which was developed to facilitate the planning,
study design, and statistical analysis of PD-related data [33]. The subjects consisted of
patients referred with suspected parkinsonism thought to be caused by PD. Each
patient was rated by a specialist on a percentage probability of having PD, with
90-100% considered as probable PD (this variable was not included in the analysis).
This data was collected by several independent clinical centers in the US, and organized
by the University of Rochester, NY. Ethical approval was obtained by the independent
ethical review boards of each of the participating centres. From that database, we use
the PostCEPT data.

For each patient with parkinsonism there is a comprehensive set of features collected
through various questionnaires and clinical tests, in total 215 features per patient. The
features are of different types such as yes/no questions, finite ordinal numerical rating
scales, and others, each of which can be appropriately modeled by e.g. Bernoulli
(yes/no), binomial (ordinal), categorical (nominal) and Poisson (count) random
variables (see Appendix A). For simplicity and interpretability, we assume the different
features are independent and use the elliptical model defined in Section 4.

A common problem that arises in health informatics is missing data. When using
K-means this problem is usually separately addressed prior to clustering by some type
of imputation method. However, in the MAP-DP framework, we can simultaneously
address the problems of clustering and missing data. In the CRP mixture model (10)
the missing values are treated as an additional set of random variables and MAP-DP
proceeds by updating them at every iteration. As a result, the missing values and
cluster assignments will depend upon each other so that they are consistent with the
observed feature data and each other.

We initialized MAP-DP with 10 randomized permutations of the data and iterated
to convergence on each randomized restart. The results (Tables 3 and 4) suggest that
the PostCEPT data is clustered into 5 groups with 50%, 43%, 5%, 1.6% and 0.4% of the
data in each cluster. We then performed a Student’s t-test at α = 0.01 significance level
to identify features that differ significantly between clusters. As with most hypothesis
tests, we should always be cautious when drawing conclusions, particularly considering
that not all of the mathematical assumptions underlying the hypothesis test have
necessarily been met. Nevertheless, this analysis suggest that there are 61 features that
differ significantly between the two largest clusters. Note that if, for example, none of
the features were significantly different between clusters, this would call into question
the extent to which the clustering is meaningful at all. We assume that the features
differing the most among clusters are the same features that lead the patient data to
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Table 3. Significant features of parkinsonism from the PostCEPT/PD-DOC clinical
reference data across clusters (groups) obtained using MAP-DP with appropriate
distributional models for each feature. Each entry in the table is the probability of
PostCEPT parkinsonism patient answering “yes” in each cluster (group).

Group 1 Group 2 Group 3 Group 4
Resting tremor (present and typical) 0.81 0.91 0.42 0.78

Resting tremor (absent) 0.14 0.06 0.42 0.11
Symptoms in the past week 0.58 0.94 1.00 0.67

Table 4. Significant features of parkinsonism from the PostCEPT/PD-DOC clinical
reference data across clusters obtained using MAP-DP with appropriate distributional
models for each feature. Each entry in the table is the mean score of the ordinal data in
each row. Lower numbers denote condition closer to healthy. Note that the Hoehn and
Yahr stage is re-mapped from {0, 1.0, 1.5, 2, 2.5, 3, 4, 5} to {0, 1, 2, 3, 4, 5, 6, 7}
respectively.

Mean score Scale Group1 Group 2 Group 3 Group 4
Facial expression 0-4 1.42 1.47 0.42 2.33

Tremor at rest (face, lips and chin) 0-4 0.05 0.32 0.23 1.00
Rigidity (right upper extremity) 0-4 0.90 1.30 0.38 2.11
Rigidity (left upper extremity) 0-4 0.62 1.33 0.19 2.00
Rigidity (right lower extremity) 0-4 0.46 0.97 0.04 2.56
Rigidity (left lower extremity) 0-4 0.38 1.06 0.04 2.67

Finger taps (left hand) 0-4 0.65 1.41 0.50 2.33
PD state during exam 1-4 2.65 3.85 4.00 3.00

Modified Hoehn and Yahr stage 0-7 2.46 3.19 1.62 6.33

cluster. By contrast, features that have indistinguishable distributions across the
different groups should not have significant influence on the clustering.

We applied the significance test to each pair of clusters excluding the smallest one as
it consists of only 2 patients. Exploring the full set of multilevel correlations occurring
between 215 features among 4 groups would be a challenging task that would change
the focus of this work. We therefore concentrate only on the pairwise-significant
features between Groups 1-4, since the hypothesis test has higher power when
comparing larger groups of data. The clustering results suggest many other features not
reported here that differ significantly between the different pairs of clusters that could
be further explored. Individual analysis on Group 5 shows that it consists of 2 patients
with advanced parkinsonism but are unlikely to have PD itself (both were thought to
have <50% probability of having PD).

Due to the nature of the study and the fact that very little is yet known about the
sub-typing of PD, direct numerical validation of the results is not feasible. The purpose
of the study is to learn in a completely unsupervised way, an interpretable clustering on
this comprehensive set of patient data, and then interpret the resulting clustering by
reference to other sub-typing studies.

Our analysis successfully clustered almost all the patients thought to have PD into
the 2 largest groups. Only 4 out of 490 patients (which were thought to have Lewy-body
dementia, multi-system atrophy and essential tremor) were included in these 2 groups,
each of which had phenotypes very similar to PD. Because the unselected population of
parkinsonism included a number of patients with phenotypes very different to PD, it
may be that the analysis was therefore unable to distinguish the subtle differences in
these cases. The fact that a few cases were not included in these group could be due to:
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an extreme phenotype of the condition; variance in how subjects filled in the self-rated
questionnaires (either comparatively under or over stating symptoms); or that these
patients were misclassified by the clinician. The inclusion of patients thought not to
have PD in these two groups could also be explained by the above reasons.

Comparing the two groups of PD patients (Groups 1 & 2), group 1 appears to have
less severe symptoms across most motor and non-motor measures. Group 2 is consistent
with a more aggressive or rapidly progressive form of PD, with a lower ratio of tremor
to rigidity symptoms. van Rooden et al. [11] combined the conclusions of some of the
most prominent, large-scale studies. Of these studies, 5 distinguished rigidity-dominant
and tremor-dominant profiles [34, 35, 36, 37]. Pathological correlation provides further
evidence of a difference in disease mechanism between these two phenotypes. Our
analysis, identifies a two subtype solution most consistent with a less severe tremor
dominant group and more severe non-tremor dominant group most consistent with
Gasparoli et al. [37].

These results demonstrate that even with small datasets that are common in studies
on parkinsonism and PD sub-typing, MAP-DP is a useful exploratory tool for obtaining
insights into the structure of the data and to formulate useful hypothesis for further
research.

Although the clinical heterogeneity of PD is well recognized across studies [38],
comparison of clinical sub-types is a challenging task. Studies often concentrate on a
limited range of more specific clinical features. For instance, some studies concentrate
only on cognitive features or on motor-disorder symptoms [5]. In addition, typically the
cluster analysis is performed with the K-means algorithm and fixing K a-priori might
seriously distort the analysis.

It is important to note that the clinical data itself in PD (and other
neurodegenerative diseases) has inherent inconsistencies between individual cases which
make sub-typing by these methods difficult: the clinical diagnosis of PD is only 90%
accurate; medication causes inconsistent variations in the symptoms; clinical
assessments (both self rated and clinician administered) are subjective; delayed
diagnosis and the (variable) slow progression of the disease makes disease duration
inconsistent. Therefore, any kind of partitioning of the data has inherent limitations in
how it can be interpreted with respect to the known PD disease process. It may
therefore be more appropriate to use the fully statistical DP mixture model to find the
distribution of the joint data instead of focusing on the modal point estimates for each
cluster. Our analysis presented here has the additional layer of complexity due to the
inclusion of patients with parkinsonism without a clinical diagnosis of PD. This makes
differentiating further subtypes of PD more difficult as these are likely to be far more
subtle than the differences between the different causes of parkinsonism.

7 Limitations and extensions
Despite the broad applicability of the K-means and MAP-DP algorithms, their
simplicity limits their use in some more complex clustering tasks. When facing such
problems, devising a more application-specific approach that incorporates additional
information about the data may be essential. For example, in cases of high dimensional
data (M >> N) neither K-means, nor MAP-DP are likely to be appropriate clustering
choices. Methods have been proposed that specifically handle such problems, such as a
family of Gaussian mixture models that can efficiently handle high dimensional data
[39]. Since MAP-DP is derived from the nonparametric mixture model, by
incorporating subspace methods into the MAP-DP mechanism, an efficient
high-dimensional clustering approach can be derived using MAP-DP as a building block.
We leave the detailed exposition of such extensions to MAP-DP for future work.
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Another issue that may arise is where the data cannot be described by an
exponential family distribution. Clustering such data would involve some additional
approximations and steps to extend the MAP approach. Fortunately, the exponential
family is a rather rich set of distributions and is often flexible enough to achieve
reasonable performance even where the data cannot be exactly described by an
exponential family distribution.

We may also wish to cluster sequential data. In this scenario hidden Markov models
[40] have been a popular choice to replace the simpler mixture model, in this case the
MAP approach can be extended to incorporate the additional time-ordering
assumptions [41].

8 Conclusion
This paper has outlined the major problems faced when doing clustering with K-means,
by looking at it as a restricted version of the more general finite mixture model. We
have presented a less restrictive procedure that retains the key properties of an
underlying probabilistic model, which itself is more flexible than the finite mixture
model. Making use of Bayesian nonparametrics, the new MAP-DP algorithm allows us
to learn the number of clusters in the data and model more flexible cluster geometries
than the spherical, Euclidean geometry of K-means. Additionally, it gives us tools to
deal with missing data and to make predictions about new data points outside the
training data set. At the same time, by avoiding the need for sampling and variational
schemes, the complexity required to find good parameter estimates is almost as low as
K-means with few conceptual changes. Like K-means, MAP-DP iteratively updates
assignments of data points to clusters, but the distance in data space can be more
flexible than the Euclidean distance. Unlike K-means where the number of clusters
must be set a-priori, in MAP-DP, a specific parameter (the prior count) controls the
rate of creation of new clusters. Hence, by a small increment in algorithmic complexity,
we obtain a major increase in clustering performance and applicability, making
MAP-DP a useful clustering tool for a wider range of applications than K-means.

MAP-DP is motivated by the need for more flexible and principled clustering
techniques, that at the same time are easy to interpret, while being computationally
and technically affordable for a wide range of problems and users. With recent rapid
advancements in probabilistic modeling, the gap between technically sophisticated but
complex models and simple yet scalable inference approaches that are usable in practice,
is increasing. This is why in this work, we posit a flexible probabilistic model, yet
pursue inference in that model using a straightforward algorithm that is easy to
implement and interpret.

The generality and the simplicity of our principled, MAP-based approach makes it
reasonable to adapt to many other flexible structures, that have, so far, found little
practical use because of the computational complexity of their inference algorithms.
Some BNP models that are somewhat related to the DP but add additional flexibility
are the Pitman-Yor process which generalizes the CRP [42] resulting in a similar infinite
mixture model but with faster cluster growth; hierarchical DPs [43], a principled
framework for multilevel clustering; infinite Hidden Markov models [44] that give us
machinery for clustering time-dependent data without fixing the number of states a
priori; and Indian buffet processes [45] that underpin infinite latent feature models,
which are used to model clustering problems where observations are allowed to be
assigned to multiple groups.
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Appendix
A Updating cluster hyper parameters and

computing negative log predictive distribution
functions

In the generalized MAP-DP algorithm (Algorithm 3), the computation of the variables
di,k and di,K+1 (algorithm lines 8,9) requires the collapsed prior predictive distribution
f (x|θ0), and also the collapsed posterior predictive distribution f

(
x|θ−ik

)
. This

predictive distribution requires the updated cluster posterior hyper parameters θ−ik
(algorithm line 7). These updates depend upon the distribution, and the data type, of
each data point xi. When the distribution is from the exponential family, the prior
distribution over the parameters can be chosen to be conjugate: the prior over the
parameters of the data distribution and the posterior have the same form of distribution.
This simplifies the hyper parameter updates, and, furthermore, the form of the prior
and posterior predictive distributions is the same and is available in closed form. The
table below lists some possible data types and distributions, their conjugate
prior/posterior distribution, the names given to the hyper parameters and the
corresponding name of the predictive distributions. We discuss each case in more detail
in the subsequent sections.

Distribution
of data xi

Data type Conjugate
prior/posterior

Hyper
parameters θ

Predictive
distribution

Spherical
normal
(known
variance)

x ∈ RD Spherical
normal

(
µ, σ2) Spherical

normal

Multivariate
normal
(known

covariance)

x ∈ RD Multivariate
normal

(µ,Σ) Multivariate
normal

Multivariate
normal

x ∈ RD Normal-
Wishart

(m, c,B, a) Multivariate
Student-t

Exponential x ∈ R, x ≥ 0 Gamma (α, β) Lomax
Categorical x ∈ {1, 2, . . . D} Dirichlet (α1, . . . , αD) Dirichlet-

multinomial
Binomial x ∈ {0, 1, . . . n} Beta (α, β) Beta-

binomial
Poisson x ∈ Z, x ≥ 0 Gamma (α, β) Negative-

binomial
Geometric x ∈ Z, x ≥ 0 Beta (α, β) Ratio of beta

functions

Spherical normal data with known variance

This is the variant of MAP-DP described in Algorithm 2. When each data point x ∈ RD
is assumed to be spherical Gaussian with known variance σ̂2 shared across dimensions,
the conjugate prior distribution of the Gaussian mean vector parameter µ ∈ RD is also
spherical normal with hyper parameters θ0 =

(
µ0, σ

2
0
)
. Then the posterior distribution

for each cluster is also spherical normal with hyper parameters θ−ik =
(
µ−ik , σ−ik

)
. The

hyper parameter updates (Algorithm 3, line 7) for each cluster are:
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σ−ik =
(

1
σ2

0
+ 1
σ̂2N

−i
k

)−1
(14)

µ−ik = σ−ik

µ0

σ2
0

+ 1
σ̂2

∑
j:zj=k,j 6=i

xj


The predictive distributions f (x|θ0) and f

(
x
∣∣θ−ik ) are D-dimensional spherical

normal distributions, whose negative logs are:

− ln f (x|θ) = 1
2 (σ2 + σ̂2) ‖x− µ‖

2
2 + D

2 ln
(
σ2 + σ̂2)+ D

2 ln (2π) (15)

Note that since the normalization term D
2 ln (2π) is common to both predictive

distributions, it can be omitted when computing di,k and di,K+1 in the algorithm.

Multivariate normal data with known covariance

For data points x ∈ RD assumed to be multivariate Gaussian with known covariance
matrix Σ̂, the conjugate prior distribution of the Gaussian mean vector parameter is
also multivariate normal with hyper parameters θ0 = (µ0,Σ0). The posterior
distribution for each cluster is also multivariate normal with hyper parameters
θ−ik =

(
µ−ik ,Σ−ik

)
. The hyper parameter updates are:

Σ−ik =
(

Σ−1
0 + Σ̂−1N−ik

)−1
(16)

µ−ik = Σ−ik

Σ−1
0 µ0 + Σ̂−1

∑
j:zj=k,j 6=i

xj


The predictive distributions f (x|θ0) and f

(
x
∣∣θ−ik ) are D-dimensional normal

distributions, whose negative logs are:

− ln f (x|θ) = 1
2 (x− µ)T

(
Σ + Σ̂

)−1
(x− µ) + D

2 ln
∣∣∣Σ + Σ̂

∣∣∣+ D

2 ln (2π) (17)

Since the normalization term D
2 ln (2π) is common to both predictive distributions, it

can be omitted when computing di,k and di,K+1 in the algorithm.

Multivariate Gaussian data

When each data point x ∈ RD is assumed to be multivariate Gaussian with unknown
mean vector and covariance matrix, the conjugate prior distribution of the Gaussian
parameters is Normal-Wishart, with hyper parameters θ0 = (m0, c0, B0, a0). Then, the
posterior distribution for each cluster is also Normal-Wishart, with hyper parameters
θ−ik =

(
m−ik , c−ik , B−ik , a−ik

)
. These are updated for each cluster according to:
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m−ik =c0m0 +N−ik x̄−ik
c0 +N−ik

c−ik =c0 +N−ik

B−ik =
(
B−1

0 + S−ik + c0N
−i
k

c0 +N−ik

(
x̄−ik −m0

) (
x̄−ik −m0

)T)−1

a−ik =a0 +N−ik

(18)

where:

x̄−ik = 1
N−ik

∑
j:zj=k,j 6=i

xj

S−ik =
∑

j:zj=k,j 6=i

(
xi − x̄−ik

) (
xi − x̄−ik

)T (19)

The predictive distributions f (x|θ0) and f
(
x
∣∣θ−ik ) are D-dimensional multivariate

Student-t distributions, whose negative log, written in terms of the parameters (µ,Λ, ν)
is:

− ln f (x|θ) = ν +D

2 ln
[
1 + ν−1 (x− µ)T Λ (x− µ)

]
− 1

2 ln |Λ|+ ln Γ
(ν

2

)
(20)

+ D

2 ln (νπ)− ln Γ
(
ν +D

2

)
where the Student-t parameters (µ,Λ, ν) are given in terms of the Normal-Wishart
parameters µ = m, ν = a−D + 1 and Λ = cν

c+1B. We note that fast incremental
updates of all these parameters are possible when including and then removing a single
data point from a cluster, see Raykov et al. [46] for further details.

Exponential data

Given data points x ∈ R, x ≥ 0 assumed to be exponentially-distributed, the conjugate
prior over the exponential rate parameter is the gamma distribution. This gamma
distribution has hyper parameters θ0 = (α, β) (shape, rate). So, the posterior
probability of the rate parameter is also gamma, and the cluster hyper parameter
θ−ik =

(
α−ik , β−ik

)
are updated using:

α−ik = α0 +
∑

j:zj=k,j 6=i
xj

β−ik = β0 +N−ik (21)

The predictive distributions f (x|θ0) and f
(
x
∣∣θ−ik ) are the so-called Lomax

distribution, with negative log:

− ln f (x|θ) = − lnα− α ln β + (α+ 1) ln (x+ β) (22)

Categorical data

For categorical data which can take on one of D > 1 possible values, x ∈ {1, 2, . . . D},
the conjugate prior over the D outcome probability parameters of this distribution are
Dirichlet distributed. This Dirichlet distribution has hyper parameters

29/35



θ0 = (α0,1, . . . , α0,D). So, the posterior outcome probability parameters for each cluster
are also Dirichlet, and for each cluster the D entries in the cluster hyper parameter
θ−ik = α−ik are updated using:

α−ik,d = α0,d +
∑

j:zj=k,j 6=i
δ (xj , d) for d = 1, . . . , D (23)

where δ (x, y) = 1 if x = y and 0 otherwise. The predictive distributions f (x|θ0) and
f
(
x
∣∣θ−ik ) are special cases of the Dirichlet-multinomial distribution, with negative log:

− ln f (x|θ) = − lnαx + ln
D∑
d=1

αd (24)

Binomial data

In the case of binomial data where the data can take on x ∈ {0, 1, . . . n} for n > 0, the
conjugate prior over the binomial success probability parameter is beta distributed, with
hyper parameters θ0 = (α0, β0). By conjugacy, the posterior cluster parameters are also
beta distributed with hyper parameters θ−ik =

(
α−ik , β−ik

)
, and are updated according to:

α−ik = α0 +
∑

j:zj=k,j 6=i
xj

β−ik = β0 +N−ik n−
∑

j:zj=k,j 6=i
xj (25)

For such binomial data, the predictive distributions f (x|θ0) and f
(
x
∣∣θ−ik ) are

beta-binomial, with negative log:

− ln f (x|θ) = − ln
(
n
x

)
− lnB (x+ α, n− x+ β) + lnB (α, β) (26)

where B (·, ·) is the beta function:

B (α, β) = Γ (α) Γ (β)
Γ (α+ β) (27)

Poisson data

For positive integer Poisson count data x ∈ Z, x ≥ 0, the conjugate prior over the single
rate parameter is the gamma distribution with hyper parameters θ0 = (α0, β0) (shape
and rate, respectively). The posterior cluster parameters are similarly gamma
distributed with hyper parameters θ−ik =

(
α−ik , β−ik

)
. The updates for these hyper

parameters are:

α−ik = α0 +
∑

j:zj=k,j 6=i
xj

β−ik = β0 +N−ik (28)

For Poisson count data, the predictive distributions f (x|θ0) and f
(
x
∣∣θ−ik ) are

negative binomial distributed with negative log:

− ln f (x|θ) = − ln
(
α+ β − 1

β

)
− α ln (1− x)− β ln x (29)
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Geometric data

In the case of positive integer data x ∈ Z, x ≥ 0 which is assumed to be
geometrically-distributed, the conjugate prior over the single success probability
parameter is the beta distribution with hyper parameters θ0 = (α0, β0). The posterior
cluster parameters are similarly beta distributed with hyper parameters
θ−ik =

(
α−ik , β−ik

)
. The updates for these hyper parameters are:

α−ik = α0 +N−ik

β−ik = β0 +
∑

j:zj=k,j 6=i
xj (30)

For geometric data, the predictive distributions f (x|θ0) and f
(
x
∣∣θ−ik ) have

negative log:
− ln f (x|θ) = − lnB (α+ 1, β + x) + lnB (α, β) (31)

where B (·, ·) is the beta function described above.

B Implementation practicalities
As with all algorithms, implementation details can matter in practice. We discuss a few
observations here:

• Empty clusters. In MAP-DP, as with K-means, it is always possible that a cluster
ceases to have any data points assigned to it. In that case, since N−ik = 0, then it
will be impossible in future iterations for data points to be assigned to that cluster
label. So, it is reasonable to drop that label and re-assign the remaining
non-empty clusters because the additional empty clusters are merely a wasted
computational overhead. The MAP-DP algorithm (Algorithm 3) can be readily
modified to do this; the most sensible place to do this is immediately after lines 12
or 13.

• Dominating reinforcement on initialization. Collapsing out the cluster parameters
causes the cluster geometry to be very robust, for example, largely insensitive to
outliers. However, there is an unwanted side-effect of this robustness: because
MAP-DP (Algorithm 3) is initialized with one single large cluster, the
reinforcement (rich-get-richer) effect of the DP can dominate over the geometry to
cause MAP-DP to become trapped in the undesirable configuration where no new
clusters can be generated. (Note that this is a problem for Gibbs sampling as well,
but in theory at least, Gibbs can escape local minima after sufficient iterations,
whereas MAP-DP cannot). Overcoming this reinforcement requires a prior count
N0 on the order of the magnitude of N , but this would usually create many
spurious small clusters. To avoid this side-effect, a practical solution removes the
reinforcement effect due to this particular initialization scheme by inserting
N−i1 = 1 in between lines 9 and 10 (Algorithm 3), only on the first iteration.

• Numerical computation of negative log likelihood. Computing the NLL (Algorithm
3 line 13) requires evaluating ln Γ (Nk) terms which are difficult to estimate with
high precision for large values of Nk. As a result the NLL can develop small
numerical errors which can cause the NLL to increase slightly over iterations. A
simple practical fix is to replace the convergence test with absolute values, i.e.
|Eold − Enew| < ε in line 14.
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C Randomized restarts
As MAP-DP is a completely deterministic algorithm, if applied to the same data set
with the same choice of input parameters, it will always produce the same clustering
result. However, since the algorithm is not guaranteed to find the global maximum of
the likelihood (11), it is important to attempt to restart the algorithm from different
initial conditions to gain confidence that the MAP-DP clustering solution is a good one.
Since there are no random quantities at the start of the MAP-DP algorithm, one viable
approach is to perform a random permutation of the order in which the data points are
visited by the algorithm. The quantity E (12) at convergence can be compared across
many random permutations of the ordering of the data, and the clustering partition
with the lowest E chosen as the best estimate.

D Obtaining cluster centroids
As explained in the introduction, MAP-DP does not explicitly compute estimates of the
cluster centroids, but this is easy to do after convergence if required. The cluster
posterior hyper parameters θk can be estimated using the appropriate Bayesian
updating formulae for each data type, given in (S1 Material). For example, for spherical
normal data with known variance:

σk =
(

1
σ2

0
+ 1
σ̂2Nk

)−1
(32)

µk = σk

(
µ0

σ2
0

+ 1
σ̂2

∑
i:zi=k

xi

)

Using these parameters, useful properties of the posterior predictive distribution f (x|θk)
can be computed, for example, in the case of spherical normal data, the posterior
predictive distribution is itself normal, with mode µk. Indeed, this quantity plays an
analogous role to the cluster means estimated using K-means.

E Out-of-sample predictions
To make out-of-sample predictions we suggest two approaches to compute the
out-of-sample likelihood for a new observation xN+1, approaches which differ in the way
the indicator zN+1 is estimated.

1. Mixture predictive density. The unknown indicator zN+1 can be integrated out
resulting in a mixture density:

p (xN+1|N0, z,X) =
K+1∑
k=1

p (zN+1 = k|N0, z,X) p (xN+1|z,X, zN+1 = k) (33)

The assignment probability p (zN+1 = k|zN , N0) is Nk

N0+N for an existing cluster
and N0

N0+N for a new cluster. The second term corresponds to the predictive
distribution of N + 1 point p (xN+1|z,X, zN+1 = k) = f

(
xN+1

∣∣∣θ−(N+1)
k

)
.

2. MAP predictive density. We can also use a point estimate for zN+1 by picking the
minimum negative log posterior of the indicator p (zN+1|xN+1, N0) or
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equivalently:

zMAP
N+1 = arg min

k∈1,...,K,K+1
[− ln p (xN+1|z,X, zN+1 = k)− ln p (zN+1 = k|N0, z,X)]

(34)
where p (xN+1|z,X, zN+1 = k) and p (zN+1 = k|N0, z,X) are computed as in the
approach above. Once we have evaluated the MAP assignment for point N + 1,
zMAP
N+1 = k∗ we model xN+1 with predictive density
p
(
xN+1|z,X, zMAP

N+1 = k∗
)

= f
(
xN+1

∣∣∣θ−(N+1)
k∗

)
.

The first (marginalization) approach is used in Blei and Jordan [15] and is more robust
as it incorporates the probability mass of all cluster components while the second
(modal) approach can be useful in cases where only a point prediction is needed.

F Missing data
In MAP-DP, we can learn missing data as a natural extension of the algorithm due to
its derivation from Gibbs sampling: MAP-DP can be seen as a simplification of Gibbs
sampling where the sampling step is replaced with maximization. The Gibbs sampler
provides us with a general, consistent and natural way of learning missing values in the
data without making further assumptions, as a part of the learning algorithm. That is,
we can treat the missing values from the data as latent variables and sample them
iteratively from the corresponding posterior one at a time, holding the other random
quantities fixed. In this framework, Gibbs sampling remains consistent as its
convergence on the target distribution is still ensured. (Note that this approach is
related to the ignorability assumption of Rubin [47] where the missingness mechanism
can be safely ignored in the modeling. Molenberghs et al. [48] have shown that more
complex models which model the missingness mechanism cannot be distinguished from
the ignorable model on an empirical basis.)

Coming from that end, we suggest the MAP equivalent of that approach. We treat
the missing values from the data set as latent variables and so update them by
maximizing the corresponding posterior distribution one at a time, holding the other
unknown quantities fixed. In MAP-DP, the only random quantity is the cluster
indicators z1, . . . , zN and we learn those with the iterative MAP procedure given the
observations x1, . . . , xN . Consider some of the variables of the M -dimensional
x1, . . . , xN are missing, then we will denote the vectors of missing values from each
observations as x∗1, . . . , x∗N with x∗i =

(
x∗i,m

)M
m=1 where x∗i,m is empty if feature m of the

observation xi has been observed. MAP-DP for missing data proceeds as follows:

1. For each feature m = 1, . . . ,M , sample all of the missing values x∗1,m, . . . , x∗N,m
from the likelihood for that variable given the prior parameters f (xi|θ0,m). Note
that we assume independent priors and that the likelihood for the different
variables can take different forms, as in the case study 6.

2. Combine the sampled missing variables with the observed ones and proceed to
update the cluster indicators z1, . . . , zN , treating all of the variables as known.
The indicators z1, . . . , zN are updated as above, by computing for each point i,
the K + 1 quantities di,1, . . . , diK , di,K+1 and computing
zi = arg mink∈1,...,,K+1

[
di,k − lnN−ik

]
.

3. Once all of the indicators z1, . . . , zN are updated, update the missing variables
x∗1, . . . , x

∗
N . For each point i, update x∗i by taking the mode of the corresponding

likelihood x∗i,d = arg maxx·,d
f
(
x·,d

∣∣θ−izi

)
. For the elliptical model we can take the
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mode of each dimension independently x∗i,d = arg maxx·,d
f
(
x·,d

∣∣∣θ−izi,d

)
. After all

x∗1, . . . , x
∗
N are updated, go back to step 2 and update the cluster indicators

z1, . . . zN , now using the observations and the updated missing variables.

G Estimating the model hyper parameters (θ0, N0)
In Bayesian models, ideally we would like to choose our hyper parameters (θ0, N0) from
some additional information that we have for the data. This could be related to the way
data is collected, the nature of the data or expert knowledge about the particular
problem at hand. For instance when there is prior knowledge about the expected
number of clusters, the relation E [K+] = N0 logN could be used to set N0.

In cases where this is not feasible, we have considered the following alternatives:

1. Empirical Bayes (EB). Set the hyper parameters to their corresponding maximum
marginal likelihood values. The maximum marginal likelihood expression for θ0
will be different for the different data types and will not always be available in
closed form. Usually they can be obtained from the parameter updates in (S1
Material) by omitting the prior terms. In MAP-DP, the maximum likelihood
estimates for the hyper parameters θ0 coincide with EB estimates as the cluster
parameters θ have already been integrated out. In fact, in the simple case of
conjugate exponential family models, the EB estimates and the maximum
likelihood estimates for the model hyper parameters are quite similar. That is why
it is common to use the maximum likelihood estimates as a simple approximation
to the EB estimate. This approach is referred to as parametric EB point
estimation [49]. Note that using EB to learn the hyper parameter N0 would not
be efficient because there is no closed form expression for the marginal likelihood
(see point 3 below, and (35)).

2. Multiple restarts. Run MAP-DP with different starting values for each of the
hyper parameters (θ0, N0), compute the NLL from (12) including the C (N0, N)
term at convergence, change one of the hyper parameters holding the rest fixed
and then restart MAP-DP with the prior parameter. Set that hyper parameter to
the value resulting in smallest NLL and proceed in the same way for the next
hyper parameter of the model. Bayesian optimisation [50] has also been proposed
to fit model hyper parameters but requires the specification of a Gaussian Process
and associated priors that may be challenging in practice. We have therefore not
utilised this approach and prefer the simpler greedy search approach. However in
certain cases BO may be more efficient in terms of the number of MAP-DP runs
required.

3. MAP estimate. Place a prior on the hyper parameter of interest and numerically
compute the mode of the posterior. For instance, by using a gamma prior on N0,
p (N0) = Gamma (aN0 , bN0), the posterior is proportional to:

p (N0|N,K) ∝ Γ (N0)
Γ (N0 +N)N

K+aN0−1
0 exp [−bN0N0] (35)

We can numerically minimize the negative log of this posterior using e.g.
Newton’s method. To ensure the solution is positive we can compute the gradient
with respect to lnN0: as Rasmussen [51] notes p (lnN0|N,K+) is log-concave and
therefore has a unique maximum.

4. Cross-validation. By considering a finite set of values for (θ0, N0), choose the
value corresponding to the minimum, average, out-of-sample likelihood across all
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cross-validation repetitions (see Appendix E). This approach is taken in Blei and
Jordan [15] to compare different inference methods.

We have found the second approach to be the most effective where empirical Bayes can
be used to obtain the values of the hyper parameters at the first run of MAP-DP. For
small datasets we recommend using the cross-validation approach as it can be less prone
to overfitting.
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