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Sir,

We read with great interest the study titled ‘Parkinson’s

disease in GTP cyclohydrolase 1 mutation carriers’ in the

September edition of Brain (Mencacci et al., 2014). The

study demonstrates loss-of-function variants in the GCH1

gene are not only a major cause of DOPA-responsive dys-

tonia but are also enriched in relatives with adult-onset

parkinsonism. Furthermore, the authors identify, through

exome re-sequencing, a number of GCH1 variants that

are enriched in patients with Parkinson’s disease compared

to control subjects. This elegant study demonstrates the

power of exome re-sequencing and highlights the potential

role for rare variants in genes such as GCH1 as suscepti-

bility factors in Parkinson’s disease. A genetic role for the

GCH1 locus is reinforced by the recent discovery that a

SNP at the GCH1 locus is associated with Parkinson’s

disease in a large-scale genome-wide association study

(GWAS) meta-analysis (Nalls et al., 2014).

The coding variants identified in the exome re-sequencing

study increased the risk of Parkinson’s disease by 7.5-fold

(2.4–25.3, 95% confidence intervals) and the authors note

that this is likely to be an underestimation of the true odds

ratio, because of the method of implementing prediction

scores. Therefore, these variants seem to significantly

impact Parkinson’s disease aetiology. The authors propose

a number of mechanisms by which loss-of-function GCH1

variants may lead to increased nigral degeneration and

Parkinson’s disease including that dopamine exerts a pro-

tective, anti-apoptotic role through dopamine receptors,

that variants in GCH1 result in compensatory mechanisms

that stave off DOPA-responsive dystonia, but increase the

vulnerability of the neurons to ageing, and finally, that

the lower striatal dopamine levels observed in GCH1

mutation carriers mean a lower threshold of nigral cell

loss is sufficient to induce clinical symptoms. In addition

to these logical hypotheses put forward in the manuscript,

it may be significant to note that tetrahydrobiopterin

(BH4) has a number of other cellular roles, which may

contribute to nigral cell loss in individuals carrying

GCH1 variants. These mechanisms may include the role

of BH4 as a cofactor for nitric oxide synthases (NOS),

alkylglycerol monooxygenase (AGMO) or other amino

acid hydroxylases, in addition to the role of BH4 as an

antioxidant.

BH4 levels have been demonstrated to be decreased in

patients with Parkinson’s disease but high doses of oral

BH4 for 5 days have no immediate therapeutic benefits in

a short-term study of two patients with Parkinson’s disease

(Nagatsu et al., 1981; Dissing et al., 1989). Patients with

DOPA-responsive dystonia typically have 10% residual

GCH1 activity whereas carriers have 35% activity

(Ichinose et al., 1994). It may be postulated that many of
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the heterozygous variants identified by Mencacci et al.

(2014) would result in a less severe GCH1 impairment.

BH4 acts as a cofactor for all amino acid hydroxylases

including phenylalanine, tryptophan and tyrosine hydroxy-

lases and, therefore, potentially provides a link both to the

motor and non-motor symptoms of Parkinson’s disease. In

addition, BH4 acts as a general antioxidant and may be

oxidized by various reactive oxygen species (Fisher and

Kaufman, 1973; Milstien and Katusic, 1999; Kohnen

et al., 2001). Increased levels of oxidants can lead to

decreased cellular BH4 levels and oxidative stress.

BH4 acts as a cofactor for the three isoforms of nitric

oxide synthase, and a loss of BH4 synthesis or a decreased

BH4:BH2 ratio in cells results in ‘NOS uncoupling’ and

production of superoxide from NOS instead of nitric

oxide (Vasquez-Vivar et al., 2003; Crabtree et al.,

2009a). NOS uncoupling is recognized as a major factor

in endothelial dysfunction and cardiovascular disease

(Landmesser et al., 2003; McNeill and Channon, 2012).

This concept of NOS uncoupling, potentially influenced

by (amongst other factors) BH4 levels via GCH1 variants

or by inflammation, fits with recent data demonstrating a

major role of nitrative stress in Parkinson’s disease

(Giasson et al., 2000; Murray et al., 2003; Ryan et al.,

2013). Dihydrofolate reductase (DHFR) is important in

maintenance of BH4 levels and NOS coupling and may

serve as an important therapeutic target in cases of

decreased BH4 availability due to oxidative stress or

decreased GCH1 activity (Crabtree et al., 2008, 2009b;

Henchcliffe and Beal, 2008). We have previously demon-

strated that three SNPs present in the GCH1 genomic locus

represent a haplotype that alters plasma BH4 levels, GCH1

expression and vascular superoxide production (Antoniades

et al., 2008). Furthermore, these haplotypes influence the

ability of patients to produce BH4 in response to inflam-

mation (Antoniades et al., 2011). These observations sug-

gest a link between BH4 availability, oxidative stress and

neuroinflammation in patients with Parkinson’s disease

with SNPs or variants in GCH1.

In addition to these mechanisms, we have recently

demonstrated that the Parkinson’s-associated protein �-

synuclein modulates cellular BH4 levels by regulating

GCH1 activity (Ryan et al., 2014). We found that reduc-

tion of cellular �-synuclein protein levels resulted in

increased GCH1 activity and increased cellular BH4

levels. However, whether this is a direct or indirect modu-

lation, by pathways such as the PI3K-Akt or GCH1 feed-

back regulatory protein (GFRP), remains to be elucidated

(He et al., 2011). Furthermore, we have also demonstrated

that �-synuclein knockdown reduced NOS activity in

SH-SY5Y cells (Fountaine et al., 2008) and our recent

data suggest that this may be by regulation of GCH1 by

�-synuclein.

Rare variants in genes identified by exome re-sequencing

such as GCH1, as identified by Mencacci et al. (2014),

offer a novel insight into Parkinson’s disease risk and dis-

ease-modifying genes and identify novel therapeutic targets.

Such recent progress in the identification of causative

Parkinson’s disease genes in the disease population benefits

our understanding of how rare variants impact on sporadic

disease.
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